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Objectives for the course

2

Understand the principles and methods of network analysis 
relevant to infectious disease epidemiology

 Descriptive network analysis
 Statistical network analysis with ERGMs and TERGMs
 Empirical study designs for networks

Develop the knowledge and software skills to run your own 
simple network transmission models, using R and the 
EpiModel package 

Begin to learn how to extend EpiModel code for your own 
research applications
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Presenter
Presentation Notes
deterministic vs. stochastic model 
continuous or discrete time
analytically or computational solutions



Lesson plan

Day Module Content

W
1 Intro, terms & concepts

2 Statistical models for networks:  theory

T

3 Statistical models for networks: practice

4 Basic EpiModel in closed populations

5 EpiModel: working with nodal attributes

6 Data and network model parameterization

F

7 EpiModel in open populations (demography) pt. 1

8 EpiModel in open populations (demography) pt. 2; visualization

9 Extending EpiModel

10 Discussion of projects; next steps; future resources
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Software (all based in R)

Core statnet packages
Static networks: network, sna, ergm

Dynamic (temporal) networks: networkDynamic, tsna , tergm
Other packages:  for details see statnet.org website

For a broad range of descriptive and statistical network analysis
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https://statnet.org/


Show of hands - who has experience:

- With epidemic modeling?
- Using compartmental models? *
- Using stochastic agent-based models? *
- Using (full-fledged) network models? *
- Using EpiModel?

What do we mean by these terms? We’ll elaborate in a bit. For now just give your 
best answer.
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Show of hands - who has experience:

- With R?

- With social network analysis?
- Using descriptive methods?
- Using statistical inference methods?
- For static networks?
- For dynamic networks?
- Using the statnet suite of packages?
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Whose research interests relate to:

- Human pathogens?
- HIV?
- Other sexually transmitted infection(s)?
- Respiratory /airborne pathogen(s)?
- Vector-borne pathogen(s)? (mosquitos, etc.)
- Some other human pathogen?

- Animal pathogens?
- Diffusion of an intervention/behavior/information? 
- Diffusion of something else entirely?
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Background to epidemic modeling (1)
A lightning- fast overview

All* models, regardless of type, will contain the following ideas:
1. Time as a dimension over which the model unfolds

2. At least one type of element (aka agent; e.g. human beings)…

 … of which there is a population… 

 … whose members are capable of being “infected”… 

 … and also capable of infecting others 

3. At least one entity capable of doing the “infecting” (e.g. SARS-CoV2)

4. Some type of contact process by which the infection occurs 

5. A record of whether and when the elements are infected

* pretty much; there are always weird exceptions to every rule
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Background to epidemic modeling (2)
A lightning- fast overview

Some models have additional infection statuses, e.g.
 recovered and immune
 infected but not yet infectious
 perhaps stages with different levels of infectiousness

recoveryInfected
and

infectious

Recovered
and

immune

Infected
and

not infectious
Susceptible

infection progression
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Background to epidemic modeling (3)
A lightning- fast overview

Most but the very simplest of toy models will have:
1. Attributes of the elements (other than infection status), e.g.

 demographic (sex, age….)
 behavioral (level of sociality; occupation….)
 clinical (tested or not; on treatment or not…)
 geospatial (community; coordinates….)

2. Processes by which at least some of those attributes can change

Many consider attributes for the infectious agent as well, e.g.
 strain
 presence of specific mutations
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Background to epidemic modeling (4)
A lightning- fast overview

Fundamental summary measure: 𝑅𝑅0
Captures the epidemic “persistence threshold” and velocity of transmission

Value of 𝑅𝑅0 Implication

< 1 The first infected individual will on average infect < 1 person total. 
Transmission is too low for epidemic persistence

> 1 The first  infected individual will on average infect >1 person total. 
Epidemic will typically grow and persist

= 1 Right on the threshold between persistence and extinction.
Epidemic will typically just putter along

11SISMID: NME 2024

Definition:  The expected number of secondary infections generated by the first 
infected case in a population of susceptibles



Deterministic compartmental modeling (DCMs)
A lightning- fast overview

 Only the aggregate count in each state (“compartment”) is represented, 
not individual persons
 S(t) = # susceptible, etc.
 Within each compartment, units are homogeneous

 Transitions (“flows”) represent the aggregate count that moves from one 
compartment to another at any time point
 Flows are represented by differential equations (or difference equations if in discrete 

time)

Susceptible

S(t)

Infected

(and infectious)

I(t)

Recovered

(w/ Immunity)

R(t)

infection recovery
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Deterministic compartmental modeling (DCMs)
A lightning- fast overview

infection recovery

Change in # of susceptible persons 
per time unit

Change in # of infected persons 
per time unit

Change in # of recovered persons
per time unit

Infection flow

Recovery flow

• β and 𝜌𝜌 are model 
parameters

• Q: Where are the 
contact events?

• A: embedded in the 
infection flow

Susceptible

S(t)

Infected

(and infectious)

I(t)

Recovered

(w/ Immunity)

R(t)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽 ⁄𝑆𝑆𝑆𝑆 𝑁𝑁

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽 ⁄𝑆𝑆𝑆𝑆 𝑁𝑁 − 𝜌𝜌𝜌𝜌

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌
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Deterministic compartmental modeling (DCMs)
A lightning- fast overview

infection recoverySusceptible

S(t)

Infected

(and infectious)

I(t)

Recovered

(w/ Immunity)

R(t)

𝛽𝛽 ⁄𝑆𝑆𝑆𝑆 𝑁𝑁

𝜏𝜏c ⁄𝑆𝑆𝑆𝑆 𝑁𝑁

Common notation for infections where 𝛽𝛽 is called the 
“force of infection”

Can be disaggregated as: where 𝑐𝑐 = “contact rate” 
𝜏𝜏 = “transm. prob”

So: S susceptibles each have 𝑐𝑐 contacts per unit time
⁄𝐼𝐼 𝑁𝑁 of the contacts are with infected

each susceptible-infected contact has probability 𝜏𝜏 of transmitting
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Deterministic compartmental models

 Compartmental models are usually deterministic – each 
run gives the same result

 Measures = predicted counts (and represent the means of an 
equivalent stochastic process over an infinite number of runs)

 Compartments and flows can represent fractional persons
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DCM strengths

 Familiar to many (and familiarity breeds comfort)

 Have a long body of literature identifying properties of 
different classes of models

 Simple models have simple closed form expressions for 𝑅𝑅0
 Intuitively, the number of secondary infections for the first case is:

Contact rate/timestep  * duration infected  *  transmission prob/contact 

c D 𝜏𝜏
 So for a simple SIR DCM:   𝑅𝑅0 = c𝐷𝐷𝜏𝜏
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DCM weaknesses
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 Do not show the stochastic variation in a system
 Stochastic CMs do exist, but only solve this one weakness

 Adding heterogeneity blows up quickly
 Requires new compartments 

 e.g. adding 2 sexes means going from 3 compartments to 6: SF, IF, 
RF, SM, IM, RM

 What if we wanted to add in 4 racial/ethnic groups? 5 ages? 5 
categories of viral load? Testing? Treatment? Circumcision? Etc.

 And if heterogeneity isn’t in discrete categories?
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DCM weaknesses

 Representing complex partnership network patterns is 
hard (or impossible, depending who you ask)
 Non-random mixing on an attribute can be added into the 

incidence term easily enough
 Raises additional questions in open populations where group sizes can change

 But other partnership patterns are harder
 Like a tendency to only have one partner at a time? 
 To be more (or less) less likely to have contact with your partner’s partner?
 Remember that compartments only considered people in the aggregate; 

individuals are not uniquely identified

 And there is no general method for jointly estimating the 
parameters of a system of partnerships like this
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Individual-based models

 Represent each individual member of the population 
explicitly 

 This might take the form of a data frame (in R speak)
 Each row is an individual 
 Each column is an attribute

 Use code instead of equations to represent the relevant 
dynamic processes

19SISMID: NME 2024



IBM pseudocode
# Initial conditions

# create a data.frame (nrow = # of agents, ncols = # of attributes)

# assign infection status (S, I, R) as one attribute

# assign all other attributes

# Simulate epidemic

for (at = 1:num.timesteps) {

# infection

# draw the number of contacts for that step

# draw 1 pair of agents for each contact

# filter to just the discordant SI pairs

# flip coin for each pair to determine if transmission

# do bookkeeping for new infections

# recovery

# identify infected elements

# flip coin for each case to determine recovery

# do bookkeeping for recoveries

# update other attributes

# exact code depends on the nature of the attribute

}

# process output

these can 
be made 
to depend 

on the 
attributes 

of the 
agents
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IBM strengths
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 Show the stochastic variability in these systems

 Can handle multiple forms of heterogeneity with relative ease
 With individuals identified, they just get labeled

 Simple models have some simple closed form solutions for 𝑅𝑅0
 For examples, see this article
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002090/


IBM weaknesses
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 Representing heterogeneity in the contact process 
that creates the partnership network is still hard
 Some example include queuing processes and “stub 

matching”
 But these are not very realistic representations

 And here, too, there is no general method for jointly 
estimating the parameters of this complex process 
from data.
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Final note on terminology
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 Contacts vs. acts: a key distinction
 E.g. think of sexual activity  - when we say “# of contacts per year”

 Does it mean number of sex acts?
 Or numbers of different partners?

 From here on out, we will use the terms “acts” and 
“partners”

 This distinction matters for disease dynamics when there are 
repeated acts with the same person
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